© 2021 by Elsevier GmbH
Bitte nutzen Sie das untenstehende Formular um uns Kritik, Fragen oder Anregungen zukommen zu lassen.
Willkommen
Mehr InformationenBL06c-9783437223853.10001-8
10.1016/BL06c-9783437223853.10001-8
L06c-9783437223853
###
WHO-Klassifikation
Subependymom (Grad I) | D43 | M9383/1 |
Myxopapilläres Ependymom (Grad I) | D43 | M9394/1 |
Ependymom (Grad II)
|
C71 | M9391/3 |
Ependymom, RELA-Fusion positiv | C71 | M9396/3 |
Anaplastisches Ependymom (Grad III) | C71 | M9392/3 |
Ependymome
6.1
Definition und Basisinformation
6.2
Klassifikation und Stadieneinteilung
6.2.1
Klassifikation
6.2.2
Biologie
6.3
Leitsymptome
6.4
Diagnostik
6.4.1
Histopathologische Diagnostik
6.4.2
Molekulare Diagnostik
6.5
Therapie
6.5.1
Grundsätze
6.5.2
Neurochirurgische Tumorresektion
6.5.3
Nichtchirurgische Therapie
Strahlentherapie
Zielvolumen
Dosis
Konzept der lokalen Tumorbettaufsättigung
Chemotherapie
6.5.4
Begleittherapien
6.5.5
Nachsorge
6.6
Prognose
6.7
Fragestellungen und Zielsetzungen für die Zukunft
-
●
Aufrechterhaltung und Gewährleistung eines hohen Qualitätsstandards in der initialen Diagnostik durch eine konsequente Referenzbeurteilung der neuropathologischen und referenzradiologischen Befunde.
-
●
Implementation einer zeitnahen postoperativen molekularen Charakterisierung.
-
●
Definition und präklinische Evaluation von zielgerichteten bzw. subgruppenspezifischen Therapien.
-
●
Prätherapeutische Qualitätskontrolle der Radiotherapiepläne.
-
●
Evaluation der Effektivität einer zusätzlichen Chemotherapie nach der Radiotherapie für Patienten mit komplett reseziertem intrakraniellen Ependymom.
-
●
Evaluation subgruppenabhängiger Unterschiede in der chemotherapieassoziierten Effektivität.
-
●
Definition von Patientengruppen, bei denen postoperativ eine Watch-and-Wait-Strategie prospektiv evaluiert werden kann.
6.7.1
Verfahren der Konsensbildung
-
●
Arbeitsgemeinschaft Pädiatrische Radioonkologie (APRO)
-
●
Deutsche Gesellschaft für Radioonkologie (DEGRO)
-
●
Deutsche Gesellschaft für Neuropathologie und Neuroanatomie (DGNN)
-
●
Deutsche Gesellschaft für Neuroradiologie (DGNR)
-
●
Deutsche Gesellschaft für Neurochirurgie (DGNC)
-
●
Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH)
-
●
Neuroonkologische Arbeitsgemeinschaft der Deutschen Krebsgesellschaft e.V. (NOA)
Literatur
1.
Taylor, M.D., et al., Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 2005. 8(4): p. 323–35.
2.
Ostrom, Q.T., et al., CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol, 2014. 16 Suppl 4: p. iv1–63.
3.
Peris-Bonet, R., et al., Childhood central nervous system tumours – incidence and survival in Europe (1978–1997): report from Automated Childhood Cancer Information System project. Eur J Cancer, 2006. 42(13): p. 2064–80.
4.
Kaatsch, P., et al., Population-based epidemiologic data on brain tumors in German children. Cancer, 2001. 92(12): p. 3155–64.
5.
Benesch, M., et al., Ependymoma of the spinal cord in children and adolescents: a retrospective series from the HIT database. J Neurosurg Pediatr, 2010. 6(2): p. 137–44.
6.
Plotkin, S.R., et al., Spinal ependymomas in neurofibromatosis Type 2: a retrospective analysis of 55 patients. J Neurosurg Spine, 2011. 14(4): p. 543–7.
7.
Kraetzig, T., et al., Metastases of spinal myxopapillary ependymoma: unique characteristics and clinical management. J Neurosurg Spine, 2018. 28(2): p. 201–208.
8.
Agbahiwe, H.C., et al., Management of pediatric myxopapillary ependymoma: the role of adjuvant radiation. Int J Radiat Oncol Biol Phys, 2013. 85(2): p. 421–7.
9.
Bagley, C.A., et al., Long term outcomes following surgical resection of myxopapillary ependymomas. Neurosurg Rev, 2009. 32(3): p. 321–34; discussion 334.
10.
Weber, D.C., et al., Long-term outcome of patients with spinal myxopapillary ependymoma: treatment results from the MD Anderson Cancer Center and institutions from the Rare Cancer Network. Neuro Oncol, 2015. 17(4): p. 588–95.
11.
Stephen, J.H., et al., Spinal cord ependymomas and myxopapillary ependymomas in the first 2 decades of life: a clinicopathological and immunohistochemical characterization of 19 cases. J Neurosurg Pediatr, 2012. 9(6): p. 646–53.
12.
Chang, C.H., E.M. Housepian, and C. Herbert, Jr., An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology, 1969. 93(6): p. 1351–9.
13.
Warmuth-Metz, M., B. Bison, and S. Leykamm, Neuroradiologic review in pediatric brain tumor studies. Klin Neuroradiol, 2009. 19(4): p. 263–73.
14.
Zacharoulis, S., et al., Metastatic ependymoma: a multi-institutional retrospective analysis of prognostic factors. Pediatr Blood Cancer, 2008. 50(2): p. 231–5.
15.
Timmermann, B., et al., Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int J Radiat Oncol Biol Phys, 2000. 46(2): p. 287–95.
16.
Louis, D.N., et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 2016. 131(6): p. 803–20.
17.
Parker, M., et al., C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature, 2014. 506(7489): p. 451–5.
18.
Pietsch, T., et al., Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-kappaB signaling pathway. Acta Neuropathol, 2014. 127(4): p. 609–11.
19.
Pajtler, K.W., et al., Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015. 27(5): p. 728–43.
20.
Witt, H., et al., Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell, 2011. 20(2): p. 143–57.
21.
Mack, S.C., et al., Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014. 506(7489): p. 445–50.
22.
Panwalkar, P., et al., Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol, 2017. 134(5): p. 705–714.
23.
Ellison, D.W., et al., Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed, 2011. 10: p. 7.
24.
Ailon, T., et al., Long-term outcome after selective dorsal rhizotomy in children with spastic cerebral palsy. Childs Nerv Syst, 2015. 31(3): p. 415–23.
25.
Kilday, J.P., et al., Copy number gain of 1q25 predicts poor progression-free survival for pediatric intracranial ependymomas and enables patient risk stratification: a prospective European clinical trial cohort analysis on behalf of the Children's Cancer Leukaemia Group (CCLG), Societe Francaise d'Oncologie Pediatrique (SFOP), and International Society for Pediatric Oncology (SIOP). Clin Cancer Res, 2012. 18(7): p. 2001–11.
26.
Andreiuolo, F., et al., Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol, 2010. 12(11): p. 1126–34.
27.
Korshunov, A., et al., Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol, 2010. 28(19): p. 3182–90.
28.
Capper, D., et al., DNA methylation-based classification of central nervous system tumours. Nature, 2018.
29.
Aguilera, D.G., et al., Neurofibromatosis-2 and spinal cord ependymomas: Report of two cases and review of the literature. Childs Nerv Syst, 2011. 27(5): p. 757–64.
30.
Zacharoulis, S., et al., Treatment and outcome of children with relapsed ependymoma: a multi-institutional retrospective analysis. Childs Nerv Syst, 2010. 26(7): p. 905–11.
31.
Antony, R., et al., A retrospective analysis of recurrent intracranial ependymoma. Pediatr Blood Cancer, 2014. 61(7): p. 1195–201.
32.
Messahel, B., et al., Relapsed intracranial ependymoma in children in the UK: patterns of relapse, survival and therapeutic outcome. Eur J Cancer, 2009. 45(10): p. 1815–23.
33.
Massimino, M., et al., Hyperfractionated radiotherapy and chemotherapy for childhood ependymoma: final results of the first prospective AIEOP (Associazione Italiana di Ematologia-Oncologia Pediatrica) study. Int J Radiat Oncol Biol Phys, 2004. 58(5): p. 1336–45.
34.
Merchant, T.E., et al., Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol, 2009. 10(3): p. 258–66.
35.
Timmermann, B., et al., Role of radiotherapy in anaplastic ependymoma in children under age of 3 years: results of the prospective German brain tumor trials HIT-SKK 87 and 92. Radiother Oncol, 2005. 77(3): p. 278–85.
36.
Massimino, M., et al., Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma. Neuro Oncol, 2016. 18(10): p. 1451–60.
37.
Abdel-Wahab, M., et al., Spinal cord gliomas: A multi-institutional retrospective analysis. Int J Radiat Oncol Biol Phys, 2006. 64(4): p. 1060–71.
38.
Bostrom, A., et al., Surgery for spinal cord ependymomas: outcome and prognostic factors. Neurosurgery, 2011. 68(2): p. 302–8; discussion 309.
39.
von Hoff, K., et al., Risk-adapted treatment for non-metastatic ependymoma: preliminary results of the non-randomized prospective phase II clinical trial HIT2000. 2014. 24–24.
40.
Garvin, J.H., Jr., et al., Phase II study of pre-irradiation chemotherapy for childhood intracranial ependymoma. Children's Cancer Group protocol 9942: a report from the Children's Oncology Group. Pediatr Blood Cancer, 2012. 59(7): p. 1183–9.
41.
Grill, J., et al., Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J Clin Oncol, 2001. 19(5): p. 1288–96.
42.
Grundy, R.G., et al., Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol, 2007. 8(8): p. 696–705.
43.
Merchant, T.E., et al., Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma. Int J Radiat Oncol Biol Phys, 2005. 63(5): p. 1546–54.
44.
Benesch, M., D. Frappaz, and M. Massimino, Spinal cord ependymomas in children and adolescents. Childs Nerv Syst, 2012. 28(12): p. 2017–28.
45.
Feldman, W.B., et al., Tumor control after surgery for spinal myxopapillary ependymomas: distinct outcomes in adults versus children: a systematic review. J Neurosurg Spine, 2013. 19(4): p. 471–6.
46.
Pica, A., et al., The results of surgery, with or without radiotherapy, for primary spinal myxopapillary ependymoma: a retrospective study from the rare cancer network. Int J Radiat Oncol Biol Phys, 2009. 74(4): p. 1114–20.
47.
Oh, M.C., et al., Adjuvant radiotherapy delays recurrence following subtotal resection of spinal cord ependymomas. Neuro Oncol, 2013. 15(2): p. 208–15.
48.
P˛edziwiatr, K., A. Skowro´nska-Gardas, and M. Chojnacka, Spinal cord ependymoma in children – Results of postoperative radiotherapy. Radiotherapy and Oncology, 2013. 106(2): p. 181–185.
49.
Schild, S.E., et al., The results of radiotherapy for ependymomas: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys, 1998. 42(5): p. 953–8.
50.
Schild, S.E., W. Wong, and K. Nisi, In regard to the radiotherapy of myxopapillary ependymomas. Int J Radiat Oncol Biol Phys, 2002. 53(3): p. 787.
51.
Goldwein, J.W., et al., Is craniospinal irradiation required to cure children with malignant (anaplastic) intracranial ependymomas? Cancer, 1991. 67(11): p. 2766–71.
52.
Conklin, H.M., et al., Predicting change in academic abilities after conformal radiation therapy for localized ependymoma. J Clin Oncol, 2008. 26(24): p. 3965–70.
53.
Merchant, T.E., et al., Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J Clin Oncol, 2004. 22(15): p. 3156–62.
54.
Macdonald, S.M., et al., Proton radiotherapy for pediatric central nervous system ependymoma: clinical outcomes for 70 patients. Neuro Oncol, 2013. 15(11): p. 1552–9.
55.
Needle, M.N., et al., Adjuvant chemotherapy for the treatment of intracranial ependymoma of childhood. Cancer, 1997. 80(2): p. 341–7.
56.
U.S. National Library of Medicine. Clinical Trials.gov. An International Clinical Program for the Diagnosis and Treatment of Children With Ependymoma (SIOP-EP-II). Available at https://clinicaltrials.gov/show/NCT02265770 (last accessed 19.01.2018).
57.
U.S. National Library of Medicine. Clinical Trials.gov. Maintenance Chemotherapy or Observation Following Induction Chemotherapy and Radiation Therapy in Treating Younger Patients With Newly Diagnosed Ependymoma. Available at https://clinicaltrials.gov/show/NCT01096368 (last accessed 19.01.2018).
58.
Duffner, P.K., et al., Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr Neurosurg, 1998. 28(4): p. 215–22.
59.
Venkatramani, R., et al., Outcome of infants and young children with newly diagnosed ependymoma treated on the “Head Start” III prospective clinical trial. J Neurooncol, 2013. 113(2): p. 285–91.
60.
Zacharoulis, S., et al., Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer, 2007. 49(1): p. 34–40.
61.
Pitter, K.L., et al., Corticosteroids compromise survival in glioblastoma. Brain, 2016. 139(Pt 5): p. 1458–71.
62.
Conter, C., et al., Intracranial ependymomas in children: society of pediatric oncology experience with postoperative hyperfractionated local radiotherapy. Int J Radiat Oncol Biol Phys, 2009. 74(5): p. 1536–42.
63.
Frandsen, J.E., et al., Long-term life expectancy for children with ependymoma and medulloblastoma. Pediatr Blood Cancer, 2015. 62(11): p. 1986–91.
64.
Gomez, D.R., et al., High failure rate in spinal ependymomas with long-term follow-up. Neuro Oncol, 2005. 7(3): p. 254–9.